Skip to main content
Log in

A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A chemiresistive sensor is described for the lung cancer biomarker hexanal. A composite consisting of molecularly imprinted polymer nanoparticles and multiwalled carbon nanotubes was used in the sensor that is typically operated at a voltage of 4 V and is capable of selectively sensing gaseous hexanal at room temperature. It works in the 10 to 200 ppm concentration range and has a 10 ppm detection limit (at S/N = 3). The sensor signal recovers to a value close to its starting value without the need for heating even after exposure to relatively high levels of hexanal.

Schematic presentation of a chemiresistive sensor for detection of hexanal, a cancer biomarker. The hexanal-imprinted polymeric nanoparticles were synthesized, mixed with multiwalled carbon nanotubes and coated on the surface of an interdigitated electrode to produce a nanocomposite chemiresistor gas sensor for hexanal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Tietje O, Wong C (2006) Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat 99(1):19–21

    Article  CAS  Google Scholar 

  2. Saalberg Y, Wolff M (2016) VOC breath biomarkers in lung cancer. Clin Chim Acta 459:5–9

    Article  CAS  Google Scholar 

  3. Janfaza S, Banan Nojavani M, Khorsand B, Nikkhah M, Zahiri J (2017) Cancer odor database (COD): a critical databank for cancer diagnosis research. Database 2017

  4. Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A (2014) Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev 43(5):1423–1449

    Article  CAS  Google Scholar 

  5. Li N, Deng C, Yin X, Yao N, Shen X, Zhang X (2005) Gas chromatography–mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Anal Biochem 342(2):318–326

    Article  CAS  Google Scholar 

  6. Chen F, Wang C, Zhang M, Zhang X, Liu Y, Ye J, Chu Q (2014) Sensitive determination of endogenous hexanal and heptanal in urine by hollow-fiber liquid-phase microextraction prior to capillary electrophoresis with amperometric detection. Talanta 119:83–89

    Article  CAS  Google Scholar 

  7. Fuchs P, Loeseken C, Schubert JK, Miekisch W (2010) Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 126(11):2663–2670

    CAS  PubMed  Google Scholar 

  8. Yoshizumi T, Goda T, Matsumoto A, Miyahara Y (2018) Gas-sensitive field-effect transistor incorporating polymer layer and porous metal electrode in the gate structure. Sens Mater 30(5):1001–1008

    Google Scholar 

  9. Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254

    Article  CAS  Google Scholar 

  10. Jha SK, Hayashi K (2015) Polyacrylic acid polymer and aldehydes template molecule based MIPs coated QCM sensors for detection of pattern aldehydes in body odor. Sensors Actuators B Chem 206:471–487

    Article  CAS  Google Scholar 

  11. Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Chemiresistive polyaniline-based gas sensors: a mini review. Sensors Actuators B Chem 220:534–548

    Article  CAS  Google Scholar 

  12. Salunke RS, Kasar CK, Bangar MA, Chavan PG, Shirale DJ (2017) Electrodeposition of gold nanoparticles decorated single polypyrrole nanowire for arsenic detection in potable water: a chemiresistive sensor device. J Mater Sci Mater Electron 28(19):14672–14677

    Article  CAS  Google Scholar 

  13. Gaikwad S, Bodkhe G, Deshmukh M, Patil H, Rushi A, Shirsat MD, Koinkar P, Kim Y-H, Mulchandani A (2015) Chemiresistive sensor based on polythiophene-modified single-walled carbon nanotubes for detection of NO 2. Mod Phys Lett B 29(06n07):1540046

    Article  CAS  Google Scholar 

  14. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181(7–8):707–722

    Article  CAS  Google Scholar 

  15. Salcedo ARM, Sevilla FB (2018) Reversible chemiresistive sensing of ultra-low levels of elemental mercury vapor using thermally reduced graphene oxide. Microchim Acta 185(6):289

    Article  Google Scholar 

  16. Tian J, Yang G, Jiang D, Su F, Zhang Z (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183(11):2871–2878

    Article  CAS  Google Scholar 

  17. Alizadeh T (2010) Chemiresistor sensors array optimization by using the method of coupled statistical techniques and its application as an electronic nose for some organic vapors recognition. Sensors Actuators B Chem 143(2):740–749

    Article  CAS  Google Scholar 

  18. Alizadeh T, Rezaloo F (2013) Toluene chemiresistor sensor based on nano-porous toluene-imprinted polymer. Int J Environ Anal Chem 93(8):919–934

    Article  CAS  Google Scholar 

  19. Alizadeh T, Hamedsoltani L (2014) Graphene/graphite/molecularly imprinted polymer nanocomposite as the highly selective gas sensor for nitrobenzene vapor recognition. J Environ Chem Eng 2(3):1514–1526

    Article  CAS  Google Scholar 

  20. Maier NM, Lindner W (2007) Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem 389(2):377–397

    Article  CAS  Google Scholar 

  21. Haupt K, Linares AV, Bompart M, Bui BTS (2011) Molecularly imprinted polymers. In: Molecular imprinting. Springer, Berlin, pp 1–28

    Google Scholar 

  22. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36(3):609–628

    Article  CAS  Google Scholar 

  23. Ye L, Cormack PA, Mosbach K (1999) Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal Commun 36(2):35–38

    Article  CAS  Google Scholar 

  24. Piacham T, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013) Synthesis and computational investigation of molecularly imprinted nanospheres for selective recognition of alpha-tocopherol succinate. EXCLI J 12:701

    PubMed  PubMed Central  Google Scholar 

  25. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920

    Article  CAS  Google Scholar 

  26. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  Google Scholar 

  27. Jang Y-T, Moon S-I, Ahn J-H, Lee Y-H, Ju B-K (2004) A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sensors Actuators B Chem 99(1):118–122

    Article  CAS  Google Scholar 

  28. Alizadeh T, Azizi S (2016) Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens Bioelectron 81:198–206

    Article  CAS  Google Scholar 

  29. Shlomi D, Abud M, Liran O, Bar J, Gai-Mor N, Ilouze M, Onn A, Ben-Nun A, Haick H, Peled N (2017) Detection of lung cancer and EGFR mutation by electronic nose system. J Thorac Oncol 12(10):1544–1551

    Article  Google Scholar 

  30. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673

    Article  CAS  Google Scholar 

  31. Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551

    Article  CAS  Google Scholar 

  32. Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta 347(1):25–39

    Article  CAS  Google Scholar 

  33. Yu L-Q, Wang L-Y, Su F-H, Hao P-Y, Wang H, Lv Y-K (2018) A gate-opening controlled metal-organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients. Microchim Acta 185(6):307

    Article  Google Scholar 

  34. Huang K, Zhang Z, Yuan F, Xie C (2013) Fabrication and Hexanal gas sensing property of Nano-SnO2 flat-type coplanar gas sensor arrays at Ppb level. Curr Nanosci 9(3):357–362

    Article  CAS  Google Scholar 

  35. Huang K, Zhu C, Yuan F, Xie C (2013) Nanoscale SnO2 flat-type coplanar Hexanal gas sensor arrays at ppb level. J Nanosci Nanotechnol 13(6):4370–4374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors express their gratitude to Geoffrey Barrow for language revision and his valuable comments. We would like to thank Dr. Moslem Shojaee for sharing his experience with the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikkhah.

Ethics declarations

This study was funded by research council of Tarbiat Modares University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sajjad Janfaza and Maryam Banan Nojavani are considered co-first authors.

Electronic supplementary material

ESM 1

(DOC 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janfaza, S., Banan Nojavani, M., Nikkhah, M. et al. A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes. Microchim Acta 186, 137 (2019). https://doi.org/10.1007/s00604-019-3241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3241-z

Keywords

Navigation